
1 The flexihain protoolIn this setion, we desribe the flexihain protool, allowing lient ode todynamially add elements to, and delete elements from a sequene (or hain)of suh elements.1.1 The onept of a positionA �exihain uses the onept of a �position�, whih has two di�erent meaningsin di�erent ontexts.The �rst meaning is the position at whih an element is loated in the hain.In this ontext, the position must have a value between 0 and l − 1, where
l is the length of the hain. This meaning is used when an element is to bedeleted or when an element is aessed or replaed.The seond meaning is the position between two elements (or at one of theextreme ends of the hain). In this ontext, the position may have a valuebetween 0 and the length of the hain inlusive. The position 0 means thebeginning of the hain (before the �rst element, if any), and the positionequal to the length means the end of the hain (after the last element ifany). This meaning is used when an element is to be inserted.1.2 PerformaneAessing and replaing an element are onstant-time operations.We guarantee linear average omplexity of a sequene of insert and deleteoperations provided that the position of two suessive operations in thesequene is bounded.More spei�ally, the average omplexity of an operation is proportional tothe di�erene between the position of the operation and the position of theprevious operation.Here we atually onsider distane modulo the length of the hain so that thedistane between the last position and the �rst is 1. In partiular, the longestpossible distane between to operations is half of the number of elements inthe hain. 1



The implementation will alloate more spae than is neessary. Wheneverspae runs out, we alloate a bigger hunk of memory to hold the elements.The new hunk size will be lk, were l again is the length of the hain and
k is a onstant fator. We multiply rather than add, beause we want toguarantee the linear average omplexity of a sequene of insert and deleteoperations. Typially, k is somewhere between 1.5 and 2. The default valueis k = 1.5.We shrink the spae whenever the length of the hain (the number of el-ements) is signi�antly smaller than the available spae. By default, thede�nition of �signi�antly� is that the ratio of length to size must be lessthan 1/k2 in order for the spae to be shrunk. Again, the new hunk sizewill be lk.Using the default value of k, this means that the amount of wasted spae anbe as large as the length of the hain in the worst ase, but for a sequeneof insert operations, the average wasted spae is only 25%.Appliations that store a number of elements that does not vary muh, anhoose a small value for the k to waste less spae. Suh appliations willhave to resize the spae relatively rarely so performane will not be a�etedby small values of k.The spae will not shrink below a minimum size (default 5 elements). Thereason for this is to avoid to many resize operations for small hains. It isprobably not reasonable to use a value below around 5, sine the bookkeepinginformation takes up at least this muh spae. This value is also used for theinitial size of the hain. Appliations that will typially store a large numberof elements an hoose a greater value for the minimum size. Doing so alsoimproves performane sine fewer resize operations will have to be exeuted.1.3 Protool lasses and funtionsMany names of operations in this setion have a terminatin �*� whih ismeant to suggest a spread version of the operation. Later (in the flexiursorsetion) we give nospread versions of the operations.

⇒ flexihain [Protool Class℄The protool lass for �exihains. 2



⇒ :initial-ontents [Initarg ℄
⇒ :element-type [Initarg ℄
⇒ :fill-element [Initarg ℄
⇒ :expand-fator [Initarg ℄
⇒ :min-size [Initarg ℄All instantiable sublasses of flexihain aept these initargs.The :initial-ontents initarg is a sequene (list, vetor, string) of objetsto be stored in the flexihain from the start.The :element-type initarg determines the type of the elements of the flexihain(default is t).The :fill-element initarg should be an objet that is ompatible with the:element-type initarg and will be used to �ll unoupied spae in the hain(to help the garbage olletor). The default value for this initarg will besupplied by the implementation aording to the element-type given. Theimplementation will test nil, 0, and #\a. If none of these values will work,the lient must supply a value that is ompatible with :element-type.The :expand-fator initarg is used to determine the fator by whih theavailable spae will be multiplied whenever the spae for the hain is full.Default value is 1.5.The :min-size initarg determines the smallest spae alloated to hold ele-ments of the hain. Default value is 5. It is not reasonable to supply valuessmaller than 5.The instane reated by make-instane will have a length whih is that ofthe sequene given by :initial-ontents or 0 if no :initial-ontentswas given.
⇒ standard-flexihain [Class℄The standard instantiable sublass of flexihain.
⇒ nb-elements hain [Generi Funtion℄Return the number of elements in the �exihain hain.
⇒ flexi-error [Error Condition℄The base ondition for all onditions that may be signaled by the operationson �exihains. 3



⇒ flexi-position [Error Condition℄This ondition will be signaled by operations that require a position argu-ment whenever that argument is out of range.
⇒ insert* hain position objet [Generi Funtion℄Insert an objet at position of the �exihain. If position is out of range (lessthan 0 or greater than the length of hain), the flexi-position onditionwill be signaled.
⇒ delete* hain position [Generi Funtion℄Delete an element at position of the �exihain. If position is out of range (lessthan 0 or greater than or equal to the length of hain), the flexi-positionondition will be signaled.
⇒ delete-elements* hain position n [Generi Funtion℄Delete N elements at position of the �exihain. If position + N is out ofrange (less than 0 or greater than or equal to the length of hain, the flexi-position-error ondition will be signaled, and nothing will be deleted. nan be negative, in whih ase elements will be deleted before position.
⇒ element* hain position [Generi Funtion℄Return the element at position of the hain. If position is out of range (lessthan 0 or greater than or equal to the length of hain), the flexi-positionondition will be signaled.
⇒ (setf element*) objet hain position [Generi Funtion℄Replae the element at position of hain by objet. If position is out of range(less than 0 or greater than or equal to the length of hain), the flexi-position ondition will be signaled.1.4 Stak and queue operationsA flexihain an be used as a stak or as a queue with very good per-formane. In this setion, we suggest a set of operations to failitate suhuse.
⇒ push-start hain objet [Generi Funtion℄4



Insert an objet at the beginning of the hain.
⇒ push-end hain objet [Generi Funtion℄Insert an objet at the end of the hain.
⇒ pop-start hain [Generi Funtion℄Pop and return the element at the beginning of the hain
⇒ pop-end hain [Generi Funtion℄Pop and return the element at the end of the hain
⇒ rotate hain &optional (n 1) [Generi Funtion℄Rotate the elements of the hain so that the element that used to be atposition n now is at position 0. With a negative value of n rotate theelements so that the element that used to be at position 0 now is at position

n. When the magnitude of n is greater than the length of the hain, theoperation wraps around so that it beomes equivalent to the same operationwith a value of n modulo the length. When the length of the hain is lessthan 2, this funtion does nothing.2 Implementation of the flexihain protool2.1 RepresentationWe keep elements in a vetor treated as a irular gap bu�er with two sentinelelements, one before the �rst element of the hain (with a position of −1),and one after the last element of the hain (with a position equal to the lengthof the hain). We use the word position to refer to the abstrat position ofan element in a �exihain, and the word index when we talk about indexesof the gap bu�er used in the implementation. We say that an index i is validif 0 ≤ i < l where l is the size of the vetor (the vetor is never of size 0, soit is always the ase that l > 0).We use the term extended element to mean a user element or a sentinel.We say that the vetor is full when it ontains as many extended elementsas its length (i.e., the gap has a size of 0), and empty when it ontains nouser elements (and thus only the sentinels) (i.e., the gap is the size as the5



Figure 1: Gap and data are both ontiguous
Figure 2: Data is not ontiguousvetor minus 2).There are three di�erent possible on�gurations of the gap with respet tothe data. Figure 1 shows the ase where both the gap and the data are on-tiguous. Figure 2 shows the ase where the data is not ontiguous. Finally,�gure 3 shows the ase where the gap is not ontiguous.The implementation of a �exihain allows for the �rst element (i.e., the�rst sentinel with a position of −1) to be loated at any valid index of thevetor. For that reason, we need an index (alled data-start) whih alwaysindiates the index of the �rst sentinel i.e.. data-start is always a validindexA positional index is an index in the vetor that orresponds to a positionin the �exihain, and so is an index either of a user objet or the index ofthe last sentinel.We introdue two di�erent indexes (always valid as well), gap-start andgap-end. The gap-start index is the �rst index of the gap. When the
Figure 3: Gap is not ontiguous6



vetor is not full, the gap-start is always an index ontaining no extendedelement, suh that the previous index does ontain an extended element.The gap-end index is the �rst index beyond the gap and is always the indexof an extended element. When the vetor is not full, the previous indexdoes not ontain an extended element. Notie that for ertain on�gurationsgap-start is smaller than gap-end and for ertain other on�gurations, thereverse is true.When the vetor is full, gap-start and gap-end are always equal.2.2 Computing and index from a positionStep one in inserting or deleting an element is to determine an index orre-sponding to the position. Here is how it is done: we ompute a value s whihis equal to gap-start if gap-start is greater than data-start. Otherwise
s is equal to gap-start plus the size of the vetor. The position is addedto data-start, giving the value i. If i is greater than or equal to s, the sizeof the gap is added to i. Finally, if i is greater than or equal to the lengthof the vetor, the length of the vetor is subtrated from i (prove that theresult is always a positional index). Call this �nal value of i the hot spot.2.3 Moving the gap to the right plaeAfter determining the index from a position, we need to determine whetherthe gap is in the right plae. This is the ase if and only if the hot spot isequal to gap-end. If that is not the ase, we need to move the gap.There is a ase when it is partiularly simple to move the gap, namely whenthe vetor is full. In that ase, we an just assign both gap-start andgap-end to the value of the hot spot.There are two ways of getting gap-end to be equal to the hot spot eithermove everything to the left of the hot spot even further left, or everythingto the right of the hot spot (inluding the hot spot itself) even further right.We always do the one that requires the fewest elements to be moved. Onesolution will require fewer than half the elements to be moved and the otherone at least half.Moving to the right will require that a number of elements equal to the7



di�erene between gap-start and the hot spot to be moved, provided thatgap-start is greater than the hot spot. If gap-start is smaller than thehot spot, it is that di�erene plus the size of the vetor. We hek whetherthat value is smaller than half of nb-elements.Moving the elements requires one, two, or three alls to replae.2.3.1 Moving elements to the leftLet us �rst onsider the ase of moving elements to the left.Case 1: If the entire ontiguous gap is to the left of the hot spot (as in theupper half of �gure 1 or as in �gure 2 with the hot spot to the right of thegap), a single all is required.Case 2:A single all is also required if the highest valid index is inside the gap(as in the lower part of �gure 1 and in �gure 3) provided that the numberof elements to be moved is no greater than the part of the gap that is �ushright in the vetor.Case 3: Two alls are needed if the highest valid index is inside the gap (asin the lower part of �gure 1 and in �gure 3), but the number of elements tobe moved is greater than the part of the gap that is �ush right in the vetor.The �rst all will �ll the part of the gap that is �ush right in the vetor,giving the situation of the upper half of �gure 1. The seond all will be asin ase 1 above.Case 4: Two alls are also needed if the data is not ontiguous (as in �gure 2)and the entire ontiguous gap is to the right of the hot spot, but the numberof elements to the left of the hot spot (i.e., the index of the hot spot beforethe move) is no greater than the size of the gap. The �rst all will moveeverything to the right of the gap so that the gap will be �ush right as inase 2 above. The seond all will move the remaining elements.Case 5: Three alls are needed if the data is not ontiguous (as in �gure 2)and the entire ontiguous gap is to the right of the hot spot, but the numberof elements to the left of the hot spot (i.e., the index of the hot spot beforethe move) is greater than the size of the gap. The �rst all will move thegap �ush right, reating the situation of ase 3 above (whih then requiresanother two alls). 8



2.3.2 Moving elements to the rightLet us now onsider moving elements to the right.Case 1: If the entire ontiguous gap is to the right of the hot spot (as in thelower half of �gure 1 or as in �gure 2 with the hot spot to the left of thegap), a single all is required.Case 2:A single all is also required if the index 0 is inside the gap (as in thehigher part of �gure 1 and in �gure 3) provided that the number of elementsto be moved is no greater than the part of the gap that is �ush left in thevetor.Case 3: Two alls are needed if index 0 is inside the gap (as in the lowerpart of �gure 1 and in �gure 3), but the number of elements to be moved isgreater than the part of the gap that is �ush left in the vetor. The �rst allwill �ll the part of the gap that is �ush left in the vetor, giving the situationof the lower half of �gure 1. The seond all will be as in ase 1 above.Case 4: Two alls are also needed if the data is not ontiguous (as in �gure 2)and the entire ontiguous gap is to the left of the hot spot, but the numberof elements to the right of the hot spot (i.e., the index of the hot spot beforethe move) is no greater than the size of the gap. The �rst all will moveeverything to the left of the gap so that the gap will be �ush left as in ase2 above. The seond all will move the remaining elements.Case 5: Three alls are needed if the data is not ontiguous (as in �gure 2)and the entire ontiguous gap is to the left of the hot spot, but the numberof elements to the right of the hot spot is greater than the size of the gap.The �rst all will move the gap �ush left, reating the situation of ase 3above (whih then requires another two alls).2.4 Inreasing the size of the vetorWe inrease the size of the vetor whenever it is full and another elementneeds to be added.When this all is made, gap-start and gap-end have the same value. Wemust preserve the position of the gap in the new vetor.A new vetor with the size of the number of required elements multiplied by9



size-multiplier is �rst alloated.Next, we opy (using a single all to replae) all elements before the gapto the start of the new vetor. Then we opy (using another single all toreplae) all elements after the gap to the end of the new vetor. The valueof gap-end is inremented by the di�erene in size of the two vetors, as isdata-start if it was greater than or equal to gap-end.2.5 Dereasing the size of the vetorAgain, a new vetor with the size of the number of required elements multi-plied by size-multiplier is �rst alloated.Next, we opy (using a single all to replae) all elements before the gapto the start of the new vetor. Then we opy (using another single all toreplae) all elements after the gap to the end of the new vetor. The valueof gap-end is deremented by the di�erene in size of the two vetors, as isdata-start if it was greater than or equal to gap-end.2.6 Inserting an objetThe insertion operation is given a position. The semantis of the insertionoperation require that all elements having a position greater than or equalto the one given as argument to the insertion operation be �moved to theright� i.e., that they have their positions inremented by one.After moving the hot spot to the right plae, the value of gap-end is theindex orresponding to the position supplied by the all. It should be notedthat the same index will result from a position of 0 and from a position equalto the urrent length of the hain.But �rst, we need to make sure the vetor is not full. If it is, we all thefuntion to inrease its size.We plae the objet to be inserted at the index of gap-start and theninrement gap-start. If this operation gives a gap-start equal to the sizeof the vetor, then it is set to 0.
10



2.7 Deleting an elementAfter moving the hot spot to the right plae, we need to delete the ele-ment at gap-end. We do this by replaing it by the fill-element so as toavoid holding on to it in ase it is no longer referened. Then we inrementgap-end.Finally, we hek whether the size of the vetor should be dereased.2.8 Stak and queue operationsThe stak and queue operations are implemented very e�iently. The pushand pop operations simply all the orresponding insert and delete oper-ations.The rotate operation deletes from one end of the hain and inserts on theother.3 The flexiursor protoolA ursorhain is like a �exihain, but it also keeps around a bunh of ��exi-ursors�.3.1 The onept of a �exiursorA �exiursor is an objet that orresponds to a position between two elementsof the hain. There are two types of �exiursors, left-stiky and right-stiky.The di�erene between the two is the way they behave when an objet isinserted at orresponding position. When an objet is inserted at the positionorresponding to a left-stiky �exiursor, this ursor will be positioned beforethe newly inserted objet, i.e., the ursor �stiks� to the element on its left.When an objet is inserted at the position orresponding to a right-stiky�exiursor, this ursor will be positioned after the newly inserted objet, i.e.,the ursor �stiks� to the element on its right.Whenever an objet is inserted before the position of a ursor, the posi-tion of the ursor will be inremented. Conversely, whenever an element is11



deleted from a position below that of a ursor, the position of the ursor isderemented.3.2 Mixing flexiursor and flexihain operationsThe user an freely mix editing operations from the flexiursor and theflexihain protool. When an editing operation from the flexihain pro-tool is used on an ursorhain objet, the ursors of the ursorhainobjet are updated aordingly.3.3 PerformaneThere an be a very large number of ursors in a hain without any negativeimpat on performane. In partiular, a sequene of insert operations is nota�eted by the number of ursors of the hain. For insert operations, wemaintain the omplexity proportional to the distane between two onseu-tive positions.A delete operation takes time proportional to the number of left-stiky ur-sors to the right of the element to delete plus the number of right-stikyursors to the left of it.The only bad ase is thus a delete operation of an element with an unboundednumber of ursors stiking to it.3.4 Protool lasses and funtions
⇒ ursorhain [Protool Class℄This is a sublass of flexihain.
⇒ standard-ursorhain [Class℄The standard instantiable sublass of ursorhain.
⇒ flexiursor [Protool Class℄The protool lass for all �exiursors.
⇒ hain [Initarg ℄12



This initarg determines the ursorhain with whih the ursor is assoiated.
⇒ standard-flexiursor [Class℄The standard instantiable sublass of flexiursor.
⇒ left-stiky-flexiursor [Class℄The standard instantiable lass for left-stiky �exiursors. It is a sublass ofstandard-�exiursor.
⇒ right-stiky-flexiursor [Class℄The standard instantiable lass for right-stiky �exiursors. It is a sublassof standard-�exiursor.
⇒ hain ursor [Generi Funtion℄Return the underlying ursorhain of the �exiursor given as argument.
⇒ lone-ursor ursor [Generi Funtion℄Create a ursor that is initially at the same loation as the one given asargument.
⇒ flexi-position-error [Error Condition℄This ondition is signaled whenever an attempt is made to use positionoutside of the range of valid positions.
⇒ ursor-pos ursor [Generi Funtion℄Return the position of the ursor.
⇒ (setf ursor-pos) position ursor [Generi Funtion℄Set the position of the ursor. If the new position of the ursor is beforethe �rst position or after the last position of the hain, the ondition flexi-position-error is signaled.
⇒ at-beginning-p ursor [Generi Funtion℄Return true if the ursor is at the beginning of the hain (i.e., if it has aposition of 0). This operation is guaranteed to be exeuted in O(1) time.
⇒ at-beginning [Error Condition℄This ondition is signaled whenever an attempt is made to move a ursorbeyond the beginning of the hain. 13



⇒ at-end-p ursor [Generi Funtion℄Return true if the ursor is at the end of the hain (i.e., if it has a positionequal to the length of the hain). This operation is guaranteed to be exeutedin O(1) time.
⇒ at-end [Error Condition℄This ondition is signaled whenever an attempt is made to move a ursorbeyond the end of the hain.
⇒ inompatible-objet-type [Error Condition℄This ondition is signaled whenever an attempt is made to insert an objetof an inompatible type into an hain.
⇒ insert ursor objet [Generi Funtion℄Insert an objet at the position orresponding to that of the ursor. Allursors loated at positions greater than the one orresponding to the ursorgiven as argument, as well as left-stiky ursors (possibly inluding the onegiven as argument) loated at the same position as the one given as argumentwill have their positions inremented by one. Other ursors are una�eted.If the type of the objet does not math the type aepted by the underlyinghain, the inompatible-objet-type ondition is signaled.
⇒ insert-sequene ursor sequene [Generi Funtion℄The e�et is the same as if eah objet of the sequene were inserted usingthe insert generi funtion.
⇒ delete< ursor &optional (n 1) [Generi Funtion℄Delete n elements before the ursor.
⇒ delete> ursor &optional (n 1) [Generi Funtion℄Delete n elements after the ursor. ...A sequene of insert and delete operations is guaranteed to be e�ient if thepositions of suessive operations are not too far apart as measured by theshortest distane of the hain viewed as a irular list. Thus, the beginningand the end of the hain are onsidered lose.
⇒ with-editing-operations ursor &body body [Maro℄14



This maro an be used to group a bunh of editing operations (insert,delete) into a body. The sequene remains loked for the duration of in-voation. Other ursors of the underlying hain are updated only after thelast operation has been ompleted, thus making it more e�ient to use thismaro than to use individual editing operations.
⇒ element< ursor [Generi Funtion℄Return the element immediately before the ursor. If the ursor is at thebeginning, an at-beginning ondition will be signaled.
⇒ (setf element<) objet ursor [Generi Funtion℄Replae the element immediately before the ursor by the objet given asargument. If the ursor is at the beginning, an at-beginning ondition willbe signaled.
⇒ element> ursor [Generi Funtion℄Return the element immediately after the ursor. If the ursor is at the end,an at-end ondition will be signaled.
⇒ (setf element>) objet ursor [Generi Funtion℄Replae the element immediately after the ursor by the objet given asargument. If the ursor is at the end, an at-end ondition will be signaled.4 Implementation of the flexiursor protoolCursors are stored as lists of weak referenes so that they an be reyledwhen no longer referened by lient ode. A vetor that parallels the oneholding elements of the �exihain holds per-element lists of ursors that stikto that element.A ursor ontains its index in the vetor as opposed to its position in thesequene. This method avoids most updates of ursors at eah insert anddelete operation. Most ursors need only be updated whenever the gapmoves. For left-stiky ursors, we store the index of p − 1, where p is theposition of the ursor. For right-stiky ursors, we store p itself.After a delete operation, ursors with indexes equal to the old value ofgap-end need to be updated. Right-stiky ursors will be attahed to theindex orresponding to the new value of gap-end, whereas left-stiky ursors15



get attahed to the position immediately preeding gap-start.Insert operations do not a�et ursors at all.Mixing of flexiursor and flexihain editing operations is possible thanksto an internal protool for moving the gap. The flexiursor ode uses:before, :after, and :around methods on the flexihain editing operationsas well as on the ode for moving the gap to update the ursors aord-ingly. This way, a flexiursor editing operation translates diretly to aflexihain editing operation with no extra ode.

16


