
1 The flexi
hain proto
olIn this se
tion, we des
ribe the flexi
hain proto
ol, allowing 
lient 
ode todynami
ally add elements to, and delete elements from a sequen
e (or 
hain)of su
h elements.1.1 The 
on
ept of a positionA �exi
hain uses the 
on
ept of a �position�, whi
h has two di�erent meaningsin di�erent 
ontexts.The �rst meaning is the position at whi
h an element is lo
ated in the 
hain.In this 
ontext, the position must have a value between 0 and l − 1, where
l is the length of the 
hain. This meaning is used when an element is to bedeleted or when an element is a

essed or repla
ed.The se
ond meaning is the position between two elements (or at one of theextreme ends of the 
hain). In this 
ontext, the position may have a valuebetween 0 and the length of the 
hain in
lusive. The position 0 means thebeginning of the 
hain (before the �rst element, if any), and the positionequal to the length means the end of the 
hain (after the last element ifany). This meaning is used when an element is to be inserted.1.2 Performan
eA

essing and repla
ing an element are 
onstant-time operations.We guarantee linear average 
omplexity of a sequen
e of insert and deleteoperations provided that the position of two su

essive operations in thesequen
e is bounded.More spe
i�
ally, the average 
omplexity of an operation is proportional tothe di�eren
e between the position of the operation and the position of theprevious operation.Here we a
tually 
onsider distan
e modulo the length of the 
hain so that thedistan
e between the last position and the �rst is 1. In parti
ular, the longestpossible distan
e between to operations is half of the number of elements inthe 
hain. 1



The implementation will allo
ate more spa
e than is ne
essary. Wheneverspa
e runs out, we allo
ate a bigger 
hunk of memory to hold the elements.The new 
hunk size will be lk, were l again is the length of the 
hain and
k is a 
onstant fa
tor. We multiply rather than add, be
ause we want toguarantee the linear average 
omplexity of a sequen
e of insert and deleteoperations. Typi
ally, k is somewhere between 1.5 and 2. The default valueis k = 1.5.We shrink the spa
e whenever the length of the 
hain (the number of el-ements) is signi�
antly smaller than the available spa
e. By default, thede�nition of �signi�
antly� is that the ratio of length to size must be lessthan 1/k2 in order for the spa
e to be shrunk. Again, the new 
hunk sizewill be lk.Using the default value of k, this means that the amount of wasted spa
e 
anbe as large as the length of the 
hain in the worst 
ase, but for a sequen
eof insert operations, the average wasted spa
e is only 25%.Appli
ations that store a number of elements that does not vary mu
h, 
an
hoose a small value for the k to waste less spa
e. Su
h appli
ations willhave to resize the spa
e relatively rarely so performan
e will not be a�e
tedby small values of k.The spa
e will not shrink below a minimum size (default 5 elements). Thereason for this is to avoid to many resize operations for small 
hains. It isprobably not reasonable to use a value below around 5, sin
e the bookkeepinginformation takes up at least this mu
h spa
e. This value is also used for theinitial size of the 
hain. Appli
ations that will typi
ally store a large numberof elements 
an 
hoose a greater value for the minimum size. Doing so alsoimproves performan
e sin
e fewer resize operations will have to be exe
uted.1.3 Proto
ol 
lasses and fun
tionsMany names of operations in this se
tion have a terminatin �*� whi
h ismeant to suggest a spread version of the operation. Later (in the flexi
ursorse
tion) we give nospread versions of the operations.

⇒ flexi
hain [Proto
ol Class℄The proto
ol 
lass for �exi
hains. 2



⇒ :initial-
ontents [Initarg ℄
⇒ :element-type [Initarg ℄
⇒ :fill-element [Initarg ℄
⇒ :expand-fa
tor [Initarg ℄
⇒ :min-size [Initarg ℄All instantiable sub
lasses of flexi
hain a

ept these initargs.The :initial-
ontents initarg is a sequen
e (list, ve
tor, string) of obje
tsto be stored in the flexi
hain from the start.The :element-type initarg determines the type of the elements of the flexi
hain(default is t).The :fill-element initarg should be an obje
t that is 
ompatible with the:element-type initarg and will be used to �ll uno

upied spa
e in the 
hain(to help the garbage 
olle
tor). The default value for this initarg will besupplied by the implementation a

ording to the element-type given. Theimplementation will test nil, 0, and #\a. If none of these values will work,the 
lient must supply a value that is 
ompatible with :element-type.The :expand-fa
tor initarg is used to determine the fa
tor by whi
h theavailable spa
e will be multiplied whenever the spa
e for the 
hain is full.Default value is 1.5.The :min-size initarg determines the smallest spa
e allo
ated to hold ele-ments of the 
hain. Default value is 5. It is not reasonable to supply valuessmaller than 5.The instan
e 
reated by make-instan
e will have a length whi
h is that ofthe sequen
e given by :initial-
ontents or 0 if no :initial-
ontentswas given.
⇒ standard-flexi
hain [Class℄The standard instantiable sub
lass of flexi
hain.
⇒ nb-elements 
hain [Generi
 Fun
tion℄Return the number of elements in the �exi
hain 
hain.
⇒ flexi-error [Error Condition℄The base 
ondition for all 
onditions that may be signaled by the operationson �exi
hains. 3



⇒ flexi-position [Error Condition℄This 
ondition will be signaled by operations that require a position argu-ment whenever that argument is out of range.
⇒ insert* 
hain position obje
t [Generi
 Fun
tion℄Insert an obje
t at position of the �exi
hain. If position is out of range (lessthan 0 or greater than the length of 
hain), the flexi-position 
onditionwill be signaled.
⇒ delete* 
hain position [Generi
 Fun
tion℄Delete an element at position of the �exi
hain. If position is out of range (lessthan 0 or greater than or equal to the length of 
hain), the flexi-position
ondition will be signaled.
⇒ delete-elements* 
hain position n [Generi
 Fun
tion℄Delete N elements at position of the �exi
hain. If position + N is out ofrange (less than 0 or greater than or equal to the length of 
hain, the flexi-position-error 
ondition will be signaled, and nothing will be deleted. n
an be negative, in whi
h 
ase elements will be deleted before position.
⇒ element* 
hain position [Generi
 Fun
tion℄Return the element at position of the 
hain. If position is out of range (lessthan 0 or greater than or equal to the length of 
hain), the flexi-position
ondition will be signaled.
⇒ (setf element*) obje
t 
hain position [Generi
 Fun
tion℄Repla
e the element at position of 
hain by obje
t. If position is out of range(less than 0 or greater than or equal to the length of 
hain), the flexi-position 
ondition will be signaled.1.4 Sta
k and queue operationsA flexi
hain 
an be used as a sta
k or as a queue with very good per-forman
e. In this se
tion, we suggest a set of operations to fa
ilitate su
huse.
⇒ push-start 
hain obje
t [Generi
 Fun
tion℄4



Insert an obje
t at the beginning of the 
hain.
⇒ push-end 
hain obje
t [Generi
 Fun
tion℄Insert an obje
t at the end of the 
hain.
⇒ pop-start 
hain [Generi
 Fun
tion℄Pop and return the element at the beginning of the 
hain
⇒ pop-end 
hain [Generi
 Fun
tion℄Pop and return the element at the end of the 
hain
⇒ rotate 
hain &optional (n 1) [Generi
 Fun
tion℄Rotate the elements of the 
hain so that the element that used to be atposition n now is at position 0. With a negative value of n rotate theelements so that the element that used to be at position 0 now is at position

n. When the magnitude of n is greater than the length of the 
hain, theoperation wraps around so that it be
omes equivalent to the same operationwith a value of n modulo the length. When the length of the 
hain is lessthan 2, this fun
tion does nothing.2 Implementation of the flexi
hain proto
ol2.1 RepresentationWe keep elements in a ve
tor treated as a 
ir
ular gap bu�er with two sentinelelements, one before the �rst element of the 
hain (with a position of −1),and one after the last element of the 
hain (with a position equal to the lengthof the 
hain). We use the word position to refer to the abstra
t position ofan element in a �exi
hain, and the word index when we talk about indexesof the gap bu�er used in the implementation. We say that an index i is validif 0 ≤ i < l where l is the size of the ve
tor (the ve
tor is never of size 0, soit is always the 
ase that l > 0).We use the term extended element to mean a user element or a sentinel.We say that the ve
tor is full when it 
ontains as many extended elementsas its length (i.e., the gap has a size of 0), and empty when it 
ontains nouser elements (and thus only the sentinels) (i.e., the gap is the size as the5



Figure 1: Gap and data are both 
ontiguous
Figure 2: Data is not 
ontiguousve
tor minus 2).There are three di�erent possible 
on�gurations of the gap with respe
t tothe data. Figure 1 shows the 
ase where both the gap and the data are 
on-tiguous. Figure 2 shows the 
ase where the data is not 
ontiguous. Finally,�gure 3 shows the 
ase where the gap is not 
ontiguous.The implementation of a �exi
hain allows for the �rst element (i.e., the�rst sentinel with a position of −1) to be lo
ated at any valid index of theve
tor. For that reason, we need an index (
alled data-start) whi
h alwaysindi
ates the index of the �rst sentinel i.e.. data-start is always a validindexA positional index is an index in the ve
tor that 
orresponds to a positionin the �exi
hain, and so is an index either of a user obje
t or the index ofthe last sentinel.We introdu
e two di�erent indexes (always valid as well), gap-start andgap-end. The gap-start index is the �rst index of the gap. When the
Figure 3: Gap is not 
ontiguous6



ve
tor is not full, the gap-start is always an index 
ontaining no extendedelement, su
h that the previous index does 
ontain an extended element.The gap-end index is the �rst index beyond the gap and is always the indexof an extended element. When the ve
tor is not full, the previous indexdoes not 
ontain an extended element. Noti
e that for 
ertain 
on�gurationsgap-start is smaller than gap-end and for 
ertain other 
on�gurations, thereverse is true.When the ve
tor is full, gap-start and gap-end are always equal.2.2 Computing and index from a positionStep one in inserting or deleting an element is to determine an index 
orre-sponding to the position. Here is how it is done: we 
ompute a value s whi
his equal to gap-start if gap-start is greater than data-start. Otherwise
s is equal to gap-start plus the size of the ve
tor. The position is addedto data-start, giving the value i. If i is greater than or equal to s, the sizeof the gap is added to i. Finally, if i is greater than or equal to the lengthof the ve
tor, the length of the ve
tor is subtra
ted from i (prove that theresult is always a positional index). Call this �nal value of i the hot spot.2.3 Moving the gap to the right pla
eAfter determining the index from a position, we need to determine whetherthe gap is in the right pla
e. This is the 
ase if and only if the hot spot isequal to gap-end. If that is not the 
ase, we need to move the gap.There is a 
ase when it is parti
ularly simple to move the gap, namely whenthe ve
tor is full. In that 
ase, we 
an just assign both gap-start andgap-end to the value of the hot spot.There are two ways of getting gap-end to be equal to the hot spot eithermove everything to the left of the hot spot even further left, or everythingto the right of the hot spot (in
luding the hot spot itself) even further right.We always do the one that requires the fewest elements to be moved. Onesolution will require fewer than half the elements to be moved and the otherone at least half.Moving to the right will require that a number of elements equal to the7



di�eren
e between gap-start and the hot spot to be moved, provided thatgap-start is greater than the hot spot. If gap-start is smaller than thehot spot, it is that di�eren
e plus the size of the ve
tor. We 
he
k whetherthat value is smaller than half of nb-elements.Moving the elements requires one, two, or three 
alls to repla
e.2.3.1 Moving elements to the leftLet us �rst 
onsider the 
ase of moving elements to the left.Case 1: If the entire 
ontiguous gap is to the left of the hot spot (as in theupper half of �gure 1 or as in �gure 2 with the hot spot to the right of thegap), a single 
all is required.Case 2:A single 
all is also required if the highest valid index is inside the gap(as in the lower part of �gure 1 and in �gure 3) provided that the numberof elements to be moved is no greater than the part of the gap that is �ushright in the ve
tor.Case 3: Two 
alls are needed if the highest valid index is inside the gap (asin the lower part of �gure 1 and in �gure 3), but the number of elements tobe moved is greater than the part of the gap that is �ush right in the ve
tor.The �rst 
all will �ll the part of the gap that is �ush right in the ve
tor,giving the situation of the upper half of �gure 1. The se
ond 
all will be asin 
ase 1 above.Case 4: Two 
alls are also needed if the data is not 
ontiguous (as in �gure 2)and the entire 
ontiguous gap is to the right of the hot spot, but the numberof elements to the left of the hot spot (i.e., the index of the hot spot beforethe move) is no greater than the size of the gap. The �rst 
all will moveeverything to the right of the gap so that the gap will be �ush right as in
ase 2 above. The se
ond 
all will move the remaining elements.Case 5: Three 
alls are needed if the data is not 
ontiguous (as in �gure 2)and the entire 
ontiguous gap is to the right of the hot spot, but the numberof elements to the left of the hot spot (i.e., the index of the hot spot beforethe move) is greater than the size of the gap. The �rst 
all will move thegap �ush right, 
reating the situation of 
ase 3 above (whi
h then requiresanother two 
alls). 8



2.3.2 Moving elements to the rightLet us now 
onsider moving elements to the right.Case 1: If the entire 
ontiguous gap is to the right of the hot spot (as in thelower half of �gure 1 or as in �gure 2 with the hot spot to the left of thegap), a single 
all is required.Case 2:A single 
all is also required if the index 0 is inside the gap (as in thehigher part of �gure 1 and in �gure 3) provided that the number of elementsto be moved is no greater than the part of the gap that is �ush left in theve
tor.Case 3: Two 
alls are needed if index 0 is inside the gap (as in the lowerpart of �gure 1 and in �gure 3), but the number of elements to be moved isgreater than the part of the gap that is �ush left in the ve
tor. The �rst 
allwill �ll the part of the gap that is �ush left in the ve
tor, giving the situationof the lower half of �gure 1. The se
ond 
all will be as in 
ase 1 above.Case 4: Two 
alls are also needed if the data is not 
ontiguous (as in �gure 2)and the entire 
ontiguous gap is to the left of the hot spot, but the numberof elements to the right of the hot spot (i.e., the index of the hot spot beforethe move) is no greater than the size of the gap. The �rst 
all will moveeverything to the left of the gap so that the gap will be �ush left as in 
ase2 above. The se
ond 
all will move the remaining elements.Case 5: Three 
alls are needed if the data is not 
ontiguous (as in �gure 2)and the entire 
ontiguous gap is to the left of the hot spot, but the numberof elements to the right of the hot spot is greater than the size of the gap.The �rst 
all will move the gap �ush left, 
reating the situation of 
ase 3above (whi
h then requires another two 
alls).2.4 In
reasing the size of the ve
torWe in
rease the size of the ve
tor whenever it is full and another elementneeds to be added.When this 
all is made, gap-start and gap-end have the same value. Wemust preserve the position of the gap in the new ve
tor.A new ve
tor with the size of the number of required elements multiplied by9



size-multiplier is �rst allo
ated.Next, we 
opy (using a single 
all to repla
e) all elements before the gapto the start of the new ve
tor. Then we 
opy (using another single 
all torepla
e) all elements after the gap to the end of the new ve
tor. The valueof gap-end is in
remented by the di�eren
e in size of the two ve
tors, as isdata-start if it was greater than or equal to gap-end.2.5 De
reasing the size of the ve
torAgain, a new ve
tor with the size of the number of required elements multi-plied by size-multiplier is �rst allo
ated.Next, we 
opy (using a single 
all to repla
e) all elements before the gapto the start of the new ve
tor. Then we 
opy (using another single 
all torepla
e) all elements after the gap to the end of the new ve
tor. The valueof gap-end is de
remented by the di�eren
e in size of the two ve
tors, as isdata-start if it was greater than or equal to gap-end.2.6 Inserting an obje
tThe insertion operation is given a position. The semanti
s of the insertionoperation require that all elements having a position greater than or equalto the one given as argument to the insertion operation be �moved to theright� i.e., that they have their positions in
remented by one.After moving the hot spot to the right pla
e, the value of gap-end is theindex 
orresponding to the position supplied by the 
all. It should be notedthat the same index will result from a position of 0 and from a position equalto the 
urrent length of the 
hain.But �rst, we need to make sure the ve
tor is not full. If it is, we 
all thefun
tion to in
rease its size.We pla
e the obje
t to be inserted at the index of gap-start and thenin
rement gap-start. If this operation gives a gap-start equal to the sizeof the ve
tor, then it is set to 0.
10



2.7 Deleting an elementAfter moving the hot spot to the right pla
e, we need to delete the ele-ment at gap-end. We do this by repla
ing it by the fill-element so as toavoid holding on to it in 
ase it is no longer referen
ed. Then we in
rementgap-end.Finally, we 
he
k whether the size of the ve
tor should be de
reased.2.8 Sta
k and queue operationsThe sta
k and queue operations are implemented very e�
iently. The pushand pop operations simply 
all the 
orresponding insert and delete oper-ations.The rotate operation deletes from one end of the 
hain and inserts on theother.3 The flexi
ursor proto
olA 
ursor
hain is like a �exi
hain, but it also keeps around a bun
h of ��exi-
ursors�.3.1 The 
on
ept of a �exi
ursorA �exi
ursor is an obje
t that 
orresponds to a position between two elementsof the 
hain. There are two types of �exi
ursors, left-sti
ky and right-sti
ky.The di�eren
e between the two is the way they behave when an obje
t isinserted at 
orresponding position. When an obje
t is inserted at the position
orresponding to a left-sti
ky �exi
ursor, this 
ursor will be positioned beforethe newly inserted obje
t, i.e., the 
ursor �sti
ks� to the element on its left.When an obje
t is inserted at the position 
orresponding to a right-sti
ky�exi
ursor, this 
ursor will be positioned after the newly inserted obje
t, i.e.,the 
ursor �sti
ks� to the element on its right.Whenever an obje
t is inserted before the position of a 
ursor, the posi-tion of the 
ursor will be in
remented. Conversely, whenever an element is11



deleted from a position below that of a 
ursor, the position of the 
ursor isde
remented.3.2 Mixing flexi
ursor and flexi
hain operationsThe user 
an freely mix editing operations from the flexi
ursor and theflexi
hain proto
ol. When an editing operation from the flexi
hain pro-to
ol is used on an 
ursor
hain obje
t, the 
ursors of the 
ursor
hainobje
t are updated a

ordingly.3.3 Performan
eThere 
an be a very large number of 
ursors in a 
hain without any negativeimpa
t on performan
e. In parti
ular, a sequen
e of insert operations is nota�e
ted by the number of 
ursors of the 
hain. For insert operations, wemaintain the 
omplexity proportional to the distan
e between two 
onse
u-tive positions.A delete operation takes time proportional to the number of left-sti
ky 
ur-sors to the right of the element to delete plus the number of right-sti
ky
ursors to the left of it.The only bad 
ase is thus a delete operation of an element with an unboundednumber of 
ursors sti
king to it.3.4 Proto
ol 
lasses and fun
tions
⇒ 
ursor
hain [Proto
ol Class℄This is a sub
lass of flexi
hain.
⇒ standard-
ursor
hain [Class℄The standard instantiable sub
lass of 
ursor
hain.
⇒ flexi
ursor [Proto
ol Class℄The proto
ol 
lass for all �exi
ursors.
⇒ 
hain [Initarg ℄12



This initarg determines the 
ursor
hain with whi
h the 
ursor is asso
iated.
⇒ standard-flexi
ursor [Class℄The standard instantiable sub
lass of flexi
ursor.
⇒ left-sti
ky-flexi
ursor [Class℄The standard instantiable 
lass for left-sti
ky �exi
ursors. It is a sub
lass ofstandard-�exi
ursor.
⇒ right-sti
ky-flexi
ursor [Class℄The standard instantiable 
lass for right-sti
ky �exi
ursors. It is a sub
lassof standard-�exi
ursor.
⇒ 
hain 
ursor [Generi
 Fun
tion℄Return the underlying 
ursor
hain of the �exi
ursor given as argument.
⇒ 
lone-
ursor 
ursor [Generi
 Fun
tion℄Create a 
ursor that is initially at the same lo
ation as the one given asargument.
⇒ flexi-position-error [Error Condition℄This 
ondition is signaled whenever an attempt is made to use positionoutside of the range of valid positions.
⇒ 
ursor-pos 
ursor [Generi
 Fun
tion℄Return the position of the 
ursor.
⇒ (setf 
ursor-pos) position 
ursor [Generi
 Fun
tion℄Set the position of the 
ursor. If the new position of the 
ursor is beforethe �rst position or after the last position of the 
hain, the 
ondition flexi-position-error is signaled.
⇒ at-beginning-p 
ursor [Generi
 Fun
tion℄Return true if the 
ursor is at the beginning of the 
hain (i.e., if it has aposition of 0). This operation is guaranteed to be exe
uted in O(1) time.
⇒ at-beginning [Error Condition℄This 
ondition is signaled whenever an attempt is made to move a 
ursorbeyond the beginning of the 
hain. 13



⇒ at-end-p 
ursor [Generi
 Fun
tion℄Return true if the 
ursor is at the end of the 
hain (i.e., if it has a positionequal to the length of the 
hain). This operation is guaranteed to be exe
utedin O(1) time.
⇒ at-end [Error Condition℄This 
ondition is signaled whenever an attempt is made to move a 
ursorbeyond the end of the 
hain.
⇒ in
ompatible-obje
t-type [Error Condition℄This 
ondition is signaled whenever an attempt is made to insert an obje
tof an in
ompatible type into an 
hain.
⇒ insert 
ursor obje
t [Generi
 Fun
tion℄Insert an obje
t at the position 
orresponding to that of the 
ursor. All
ursors lo
ated at positions greater than the one 
orresponding to the 
ursorgiven as argument, as well as left-sti
ky 
ursors (possibly in
luding the onegiven as argument) lo
ated at the same position as the one given as argumentwill have their positions in
remented by one. Other 
ursors are una�e
ted.If the type of the obje
t does not mat
h the type a

epted by the underlying
hain, the in
ompatible-obje
t-type 
ondition is signaled.
⇒ insert-sequen
e 
ursor sequen
e [Generi
 Fun
tion℄The e�e
t is the same as if ea
h obje
t of the sequen
e were inserted usingthe insert generi
 fun
tion.
⇒ delete< 
ursor &optional (n 1) [Generi
 Fun
tion℄Delete n elements before the 
ursor.
⇒ delete> 
ursor &optional (n 1) [Generi
 Fun
tion℄Delete n elements after the 
ursor. ...A sequen
e of insert and delete operations is guaranteed to be e�
ient if thepositions of su

essive operations are not too far apart as measured by theshortest distan
e of the 
hain viewed as a 
ir
ular list. Thus, the beginningand the end of the 
hain are 
onsidered 
lose.
⇒ with-editing-operations 
ursor &body body [Ma
ro℄14



This ma
ro 
an be used to group a bun
h of editing operations (insert,delete) into a body. The sequen
e remains lo
ked for the duration of in-vo
ation. Other 
ursors of the underlying 
hain are updated only after thelast operation has been 
ompleted, thus making it more e�
ient to use thisma
ro than to use individual editing operations.
⇒ element< 
ursor [Generi
 Fun
tion℄Return the element immediately before the 
ursor. If the 
ursor is at thebeginning, an at-beginning 
ondition will be signaled.
⇒ (setf element<) obje
t 
ursor [Generi
 Fun
tion℄Repla
e the element immediately before the 
ursor by the obje
t given asargument. If the 
ursor is at the beginning, an at-beginning 
ondition willbe signaled.
⇒ element> 
ursor [Generi
 Fun
tion℄Return the element immediately after the 
ursor. If the 
ursor is at the end,an at-end 
ondition will be signaled.
⇒ (setf element>) obje
t 
ursor [Generi
 Fun
tion℄Repla
e the element immediately after the 
ursor by the obje
t given asargument. If the 
ursor is at the end, an at-end 
ondition will be signaled.4 Implementation of the flexi
ursor proto
olCursors are stored as lists of weak referen
es so that they 
an be re
y
ledwhen no longer referen
ed by 
lient 
ode. A ve
tor that parallels the oneholding elements of the �exi
hain holds per-element lists of 
ursors that sti
kto that element.A 
ursor 
ontains its index in the ve
tor as opposed to its position in thesequen
e. This method avoids most updates of 
ursors at ea
h insert anddelete operation. Most 
ursors need only be updated whenever the gapmoves. For left-sti
ky 
ursors, we store the index of p − 1, where p is theposition of the 
ursor. For right-sti
ky 
ursors, we store p itself.After a delete operation, 
ursors with indexes equal to the old value ofgap-end need to be updated. Right-sti
ky 
ursors will be atta
hed to theindex 
orresponding to the new value of gap-end, whereas left-sti
ky 
ursors15



get atta
hed to the position immediately pre
eding gap-start.Insert operations do not a�e
t 
ursors at all.Mixing of flexi
ursor and flexi
hain editing operations is possible thanksto an internal proto
ol for moving the gap. The flexi
ursor 
ode uses:before, :after, and :around methods on the flexi
hain editing operationsas well as on the 
ode for moving the gap to update the 
ursors a

ord-ingly. This way, a flexi
ursor editing operation translates dire
tly to aflexi
hain editing operation with no extra 
ode.

16


